THE BENEFITS OF ARTIFICIAL INTELLIGENCE IN SOCIAL MEDIA MONITORING

Authors

DOI:

https://doi.org/10.32813/2179-1120.2021.v14.n1.a623

Keywords:

Social media monitoring, Artificial intelligence], Social media

Abstract

In a scenario in which the most discussed subject is the volume of produced data in social media and how to analyze it, it is necessary to study solutions that contribute with the scanning of such information and, especially, with the search for what is relevant. According to the data disclosed by ComScore in the 2017 tendency study, Brazil has over 97 million single users connected to social media. Scattered between desktop and mobile phones, the users are constantly connected and produce diverse types of contents in their personal channels, from photos to texts and videos. From this volume of information shared by the social media users, professionals and companies look into obtaining knowledge based in such shared content. This knowledge is obtained through the process of social media monitoring, which is, most of the times, performed with professional tools that collaborate with the process of data structuring and analysis. However, for being a manual classification process, it presents a larger learning curve and information treatment process. This study aims to bring the artificial intelligence (AI) as an alternative to this problem as an orientation regarding this technology’s main benefits. The use of such technology, in this case, has the purpose to make data structuring and user’s decision-making faster and efficient. The research brings, from AI, subjects such as the machine learning process, the use of artificial neural network (ANN) and deep learning.

Metrics

Metrics Loading ...

Author Biography

Kaique dos Santos Oliveira, Digital Data Lab

Formado em Comunicação Social com Habilitação em Publicidade pela Faculdade Anhanguera Jacareí (2013) e especialista em Análise de Inteligência de Negócio pelo Instituto de Gestão em Tecnologia da Informação (2017). Possui experiência em planejamento de marketing, pesquisa e análise de dados. Atuou como professor convidado na Fundação Armando Alvares Penteado durante 4 anos (2016-2019), com participação em cursos de extensão e pós-graduação. Palestrou sobre marketing e análise de dados em organizações como: Amcham-Brasil, MiSanja, Atech, Universidade de Taubaté, Universidade do Vale do Paraíba, Faculdade Bilac e Anhanguera Educacional. Atualmente exerce a função de analista de negócios senior, na Focusnetworks.

References

ARAUJO, Ronaldo; STEIMER, Dora. Análise da Informação. In: SILVA, Tarcízio; STABILE, Max. Monitoramento e pesquisa em mídias sociais: metodologias, aplicações e inovações. São Paulo: Uva limão, 2016.

BURGER, Luciana. Perspectivas do cenário digital. ComScore, 2017.

COPELAND, Michael. What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? NVIDIA. July, 29, 2016.

DATTA, Shoumen Palit Austin. The Elusive Quest for Intelligence in Artificial Intelligence. Massachusetts Institute of Technology. 2016.

GIL, Antonio Carlos. Métodos e técnicas de pesquisa social. 6. Ed. São Paulo: Atlas, 2008.

GLAUNER, Patrick Oliver; STATE, Radu. Deep learning concepts from theory to practice. Security and Trust Ju. University of Luxembourg. January, 19, 2016.

GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep learning. MIT Press, 2016.

LAKE, Brendem M; ULLMAN, Tomer D; TENENBAUM, Joshua, B; GERSHMAN, Samuel J. Building machines that learn and think like people.

LIMA, Isaías. Inteligência artificial. 3. ed. Campus, 2014.

RUSSELL, Stuart; NORVIG, Peter. Inteligência artificial. 3 ed, Rio de Janeiro: Elsevier, 2013.

SILVA, Tarcízio; STABILE, Max. Monitoramento e pesquisa em mídias sociais: metodologias, aplicações e inovações. São Paulo: Uva limão, 2016.

______. Para entender o monitoramento de mídias sociais. Bookess, 2012.

Published

2021-03-22

How to Cite

Oliveira, K. dos S. (2021). THE BENEFITS OF ARTIFICIAL INTELLIGENCE IN SOCIAL MEDIA MONITORING. Human Sciences Journal - RCH, 14(1). https://doi.org/10.32813/2179-1120.2021.v14.n1.a623

Issue

Section

Original Article